156k views
2 votes
Find the angles between -pi and pi that satisfy:

(−√3) sin(v)+cos(v)=√3

User Surajd
by
6.4k points

1 Answer

3 votes

Observe that


\sin\left(\frac\pi6-v\right)=\sin\frac\pi6\cos v-\cos\frac\pi6\sin v=\frac12\cos v-\frac{\sqrt3}2\sin v

In the original equation, divide both sides by
\frac12:


-\sqrt3\sin v+\cos v=\sqrt3\implies\frac12\cos v-\frac{\sqrt3}2\sin v=\frac{\sqrt3}2


\implies\sin\left(\frac\pi6-v\right)=\frac{\sqrt3}2

Next,


\sin x=\frac{\sqrt3}2\implies x=\frac\pi3+2n\pi,x=\frac{2\pi}3+2n\pi

where
n is any integer. Then


\sin\left(\frac\pi6-v\right)\implies v=-\frac\pi6-2n\pi,v=-\frac\pi2-2n\pi

Fix
n=0 to ensure
-\pi<v<\pi, so that


v=-\frac\pi6,v=-\frac\pi2

User Fbiagi
by
5.8k points