Given that, "
and
"
Using this two equations evaluate
:
Using Cube formula for a+b,

Plug in a=2x \,\, \, and\, \, \, b=3y in the formula,


We know that the value of
Plug in this value in the above equation,
Now take 18 as common for the second and third term in the right hand side,
Now plug in the value 2x^2y+3xy^2\: \: as \: \: 15,



Taking Cube root on both sides, we get
