Answer:
Option 2nd is correct
![5 \pm √(81)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ng5uab6rvub3pm9gwd0yn756q2bpbz8hcv.png)
Explanation:
Given the equation:
![(x-5)^2 = 81](https://img.qammunity.org/2019/formulas/mathematics/high-school/ve7673tryaoopnrpq7zt987qvt0x88g6hf.png)
Taking square root both sides we have;
![√((x-5)^2)= \pm √(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4xmvqq7dfatgs7qjgoitu6n862fo32et6b.png)
Using the exponent rule:
![\sqrt[n]{x^n}=x](https://img.qammunity.org/2019/formulas/mathematics/high-school/ta48snlpv13oqqjhovwm7wsf0fu6mnopcg.png)
then;
![x-5 = \pm √(81)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bwj9iexsa2os4pm9mvymqcukzyiaf1wj11.png)
Add 5 to both sides we have;
![x-5+5= 5 \pm √(81)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4zgxpxqyvy8bgtczevd83nbwwcgwhms37j.png)
Simplify:
![x = 5 \pm √(81)](https://img.qammunity.org/2019/formulas/mathematics/high-school/i1n1819pd3giiiwwyifr996r4l9xc2bcki.png)
Therefore, the following expressions represents the solutions to the given equation is,
![5 \pm √(81)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ng5uab6rvub3pm9gwd0yn756q2bpbz8hcv.png)