255 views
3 votes
Hurryyyyy
Dndixnxjdjdjddjjdjdudjddj

Hurryyyyy Dndixnxjdjdjddjjdjdudjddj-example-1

2 Answers

1 vote

Answer:


\large\boxed{8x^3y^4\sqrt[3]{xy}}

Explanation:


\sqrt[3]{125x^(10)y^(13)}+\sqrt[3]{27x^(10)y^(13)}\qquad\text{use}\ \sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}\\\\=\sqrt[3]{125}\cdot\sqrt[3]{x^(10)y^(13)}+\sqrt[3]{27}\cdot\sqrt[3]{x^(10)y^(13)}\\\\=5\sqrt[3]{x^(10)y^(13)}+3\sqrt[3]{x^(10)y^(13)}\\\\=8\sqrt[3]{x^(10)y^(13)}\\\\=8\sqrt[3]{x^(3+3+3+1)y^(3+3+3+3+1)}\qquad\text{use}\ a^na^m=a^(n+m)\\\\=8\sqrt[3]{x^3x^3x^3xy^3y^3y^3y}\qquad\text{use}\ \sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}


=8\sqrt[3]{x^3}\cdot\sqrt[3]{x^3}\cdot\sqrt[3]{x^3}\cdot\sqrt[3]{y^3}\cdot\sqrt[3]{y^3}\cdot\sqrt[3]{y^3}\cdot\sqrt[3]{y^3}\cdot\sqrt[3]{xy}\qquad\text{use}\ \sqrt[n]{a^n}=a\\\\=8xxxyyyy\sqrt[3]{xy}\\\\=8x^3y^4\sqrt[3]{xy}

User Jesper Wilfing
by
7.1k points
3 votes

∛125x^10y^13 + ∛27x^10y^13

= 5x^3y^4 ∛xy + 3x^3y^4 ∛xy

= 8x^3y^4 ∛xy


Answer is A. 8x^3y^4 ∛xy

User Marykate
by
6.8k points