126k views
3 votes
Find the real numbers x and y if -3+ix^2y and x^2+y+4i are conjugate of each other. Pls solve with the steps

User Moshe Levi
by
7.2k points

2 Answers

3 votes


-3+ix^2y\\x^2+y+4i\\\\x^2+y=-3\\ix^2y=-4i\\\\x^2=-3-y\\x^2=-(4)/(y)\\\\-3-y=-(4)/(y)\\3y+y^2=4\\y^2+3y-4=0\\y^2-y+4y-4=0\\y(y-1)+4(y-1)=0\\(y+4)(y-1)=0\\y=-4 \vee y=1\\\\x^2=1 \vee x^2=-4\\x=-1 \vee x=1\\\\\boxed{(x,y)\in\{(-1,-4),(1,-4)\}}

User Ahmer Khan
by
7.2k points
4 votes
ANSWER
x = ±1 and y = -4.
Either x = +1 or x = -1 will work

Step-by-step explanation
If -3 + ix²y and x² + y + 4i are complex conjugates, then one of them can be written in the form a + bi and the other in the form a - bi. In other words, between conjugates, the imaginary parts are same in absolute value but different in sign (b and -b). The real parts are the same

For -3 + ix²y
⇒ real part: -3
⇒ imaginary part: x²y

For x² + y + 4i
⇒ real part: x² + y (since x, y are real numbers)
⇒ imaginary part: 4

Therefore, for the two expressions to be conjugates, we must satisfy the two conditions.

Condition 1: Imaginary parts are same in absolute value but different in sign. We can set the imaginary part of -3 + ix²y to be the negative imaginary part of x² + y + 4i so that the

x²y = -4 ... (I)

Condition 2: Real parts are the same

x² + y = -3 ... (II)

We have a system of equations since both conditions must be satisfied

x²y = -4 ... (I)
x² + y = -3 ... (II)

We can rearrange equation (II) so that we have

y = -3 - x² ... (II)

Substituting into equation (I)

x²y = -4 ... (I)
x²(-3 - x²) = -4
-3x² - x⁴ = -4
x⁴ + 3x² - 4 = 0
(x² + 4)(x² - 1) = 0
(x² + 4)(x-1)(x+1) = 0

Therefore, x = ±1.
Leave alone (x² + 4) as it gives no real solutions.

Solve for y:

y = -3 - x² ... (II)
y = -3 - (±1)²
y = -3 - 1
y = -4

So x = ±1 and y = -4. We can confirm this results in conjugates by substituting into the expressions:

-3 + ix²y
= -3 + i(±1)²(-4)
= -3 - 4i

x² + y + 4i
= (±1)² - 4 + 4i
= 1 - 4 + 4i
= -3 + 4i

They result in conjugates
User Rejayi CS
by
7.9k points