Answer:
Option A is correct
30°
Explanation:
Using sine ratio:
![\sin \theta = \frac{\text{Opposite side}}{\text{Hypotenuse side}}](https://img.qammunity.org/2019/formulas/mathematics/high-school/zntmvpbf5cgqw7ardhdjiutv22roiuc254.png)
In a given triangle ACB:
BC = 9 units and AB = 18
Opposite side of angle A = BC = 9 units
Hypotenuse side = AB = 18 units.
By sine ratio:
![\sin A = (9)/(18)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mo4b521xgjmjtnnh2xuj5oc1cjt4c675hn.png)
![\sin A = (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4m64w0o015c7d7catjq6n2691016koa4v0.png)
![\sin A = \sin 30^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/opz6olq78uepcso1xhb1luuxfa4lqbggin.png)
On comparing both sides we have;
![\angle A = 30^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/s7krmwukou5l40nbqeyn4w6qqyma0nchu0.png)
therefore, the measure of angle A is 30 degree.