Hey!
To solve x in this equation we must first add five to both sides to get
![√(x)](https://img.qammunity.org/2019/formulas/mathematics/college/kbjsziyl4peosfq0f23ijai585vpxo148c.png)
on its own.
Original Equation :
New Equation {Added 5 to Both Sides} :![√(x) =x-6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8gb2zadb4m7sgzzdl3c5lk0kwfxok53gi5.png)
Now we must square both sides of the equation.
Old Equation :
New Equation {Changed by Squaring Both Sides} :![x= x^(2) -12x+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fhks8f31aghxtwuxwpxcujhlvxoqcw77th.png)
And now we must solve the new equation.
Step 1 - Switch sides
![x^(2) -12x+36=x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/h42n1h5o93uea2r05faag1n2eejvz67b0e.png)
Step 2 - Subtract x from both sides
![x^(2) -12x+36-x=x-x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hzry5p8hjoxrrrk669nxiqcz07i8jikgje.png)
Step 3 - Simplify
![x^(2) -13x+36=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7u7eotdhcb38g2uqqd773m8m2wn7o1i7e9.png)
Now we need to solve the rest of the equation using the quadratic formula.
![\frac{-(-13)+ \sqrt{(-13) ^(2)-4*1*36 } }{2*1}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/do19saw4i9mf8etwnj9x2wmxyven0rvs3g.png)
![{13+ \sqrt{(-13)^(2)-4*1*36 }=13+ √(25)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/k75evnmygok70t3zjudd67mq8t21dupmxm.png)
![(13+ √(25))/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ptamoxvxn7r1rornq9cnge3xmx1c16nsvd.png)
![√(25)=5](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2vmbg9ovc2ctr5nerg3zk97v0xyzdcumwc.png)
![(13+5)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3sblcyd1kmjclltvn6uvddwtl4ueswc4gh.png)
![(18)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4tqdjteb3uz0nb84nw0a1xbhvdubser47o.png)
9
![\frac{-(-13)- \sqrt{(-13) ^(2) -4*1*36} }{2*1}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/edvv16hj7ndcdgb0er2rk6d57qdnstbrff.png)
4
So, this means that in the equation
, x = 9 and x = 4.Hope this helps!
- Lindsey Frazier ♥