110k views
1 vote
Find ∬xz ds, where s is the triangle with vertices (1,0,0), (0,1,0), and (0,1,1).

User Ashwoods
by
4.3k points

1 Answer

4 votes
Parameterize the triangle
\mathcal S by the vector-valued function
\mathbf s(u,v) with


\mathbf s(u,v)=(1-u)((1-v)(1,0,0)+v(0,1,0))+u(0,1,1)

\implies\mathbf s(u,v)=(\underbrace{(1-u)(1-v)}_(x(u,v)),\underbrace{v(1-u)+u}_(y(u,v)),\underbrace{u}_(z(u,v)))

where
0\le u\le1 and
0\le v\le1. Then the integral becomes


\displaystyle\iint_(\mathcal S)xz\,\mathrm dS=\int_(v=0)^(v=1)\int_(u=0)^(u=1)x(u,v)z(u,v)\left\|(\partial\mathbf s)/(\partial u)*(\partial\mathbf s)/(\partial v)\right\|\,\mathrm du\,\mathrm dv

=\displaystyle\sqrt2\int_(v=0)^(v=1)\int_(u=0)^(u=1)(1-u)^2u(1-v)\,\mathrm du\,\mathrm dv=\frac1{12\sqrt2}
User Igal Serban
by
6.0k points