127k views
4 votes
Which expression is a cube root of -1+i sqrt3

Which expression is a cube root of -1+i sqrt3-example-1
User Braunbaer
by
5.9k points

1 Answer

6 votes
If
z=-1+i √(3), then


Rez=-1

Imz= √(3) and

|z|= √(Re^2z+Im^2z)= \sqrt{1^2+ (√(3))^2 }= √(4)=2.
Then
cos\theta = (Rez)/(|z|) = (-1)/(2)
sin\theta = (Imz)/(|z|)= ( √(3) )/(2).

Since
\theta \in (-\pi,\pi], you can conclude that
\theta= (2\pi)/(3).
The triginometric form of z is
z=|z|(cos\theta+isin\theta)=2(cos (2\pi)/(3) +isin (2\pi)/(3) ).
Use formula
\sqrt[3]{z} =\{ \sqrt[3]z (cos (\theta+2\pi k)/(n)+isin (\theta+2\pi k)/(n) ), k=0,1,2\} to find cube root.
For k=0,
z_1= \sqrt[3]{2} (cos ( (2\pi)/(3) )/(3) +isin( (2\pi)/(3) )/(3))= \sqrt[3]{2} (cos 40^0+isin 40^0),
For k=1,
z_1= \sqrt[3]{2} (cos ( (2\pi)/(3)+2\pi )/(3) +isin( (2\pi)/(3)+2\pi )/(3))= \sqrt[3]{2} (cos 160^0+isin 160^0),
For k=2,
z_1= \sqrt[3]{2} (cos ( (2\pi)/(3)+4\pi )/(3) +isin( (2\pi)/(3)+4\pi )/(3))= \sqrt[3]{2} (cos 280^0+isin 280^0).
Answer: The correct choice is C.
User Amalfi
by
5.0k points