Answer:
Option D is correct.
and reflected across x = -1
Explanation:
From the given figure:
The coordinates of ABC are:
A(-7, 2), B(-3, 5) and C(-3, 1)
first apply the rule of translation on ABC i.e:
![(x, y) \rightarrow (x, y-6)](https://img.qammunity.org/2019/formulas/mathematics/college/msf0kn1rmjwrzjunewf4bn3inuxlyhbhhj.png)
Then;
![A(-7, 2) \rightarrow (-7, 2-6)=(-7, -4)](https://img.qammunity.org/2019/formulas/mathematics/college/hbwsofy7snpzgc5zlact1gl65yyrka3alz.png)
![B(-3, 5) \rightarrow (-3, 5-6)=(-3, -1)](https://img.qammunity.org/2019/formulas/mathematics/college/sdy9npky8p1mes1wsaz84fnpj78zxucphi.png)
![B(-3, 1) \rightarrow (-3, 1-6)=(-3, -5)](https://img.qammunity.org/2019/formulas/mathematics/college/mdepevj7lj8l5yf5j94rb0qirqz7smspdb.png)
Next, reflect it across x = -1
The rule of reflection across x = -1 i.,e
![(x, y) \rightarrow (-(x+1)-1, y)](https://img.qammunity.org/2019/formulas/mathematics/college/zv7l2z8vnuj3warxxo760jdxo0gfku8uu6.png)
or
![(x, y) \rightarrow (-x-2, y)](https://img.qammunity.org/2019/formulas/mathematics/college/qffkk71naho721kyfwaywtjwhcicd6ykzo.png)
then;
![(-7, -4) \rightarrow (7-2, -4)=(5, -4)=D](https://img.qammunity.org/2019/formulas/mathematics/college/sc7umuz18n1jmj86edyhche981dn3iuroq.png)
![(-3, -1) \rightarrow (3-2, -1)=(1, -1)=E](https://img.qammunity.org/2019/formulas/mathematics/college/c531p2qzjvclnmjgztw7ci6516gf99x233.png)
![(-3, -5) \rightarrow (3-2, -5)=(1, -5)=F](https://img.qammunity.org/2019/formulas/mathematics/college/ze4hgysqogz51p5j8vy8oebs433muj6l0w.png)
Therefore, the glide reflection describes the mapping ABC to DEF is:
and reflected across x = -1