Answer:
Option D - minimum value at −204
Explanation:
Given : Expression
![x^2 + 30x + 21](https://img.qammunity.org/2019/formulas/mathematics/high-school/mrd0te22mpd3fkengc8aq8utvkjihhg3ol.png)
To find : Complete the square to determine the maximum or minimum value of the function defined by the expression?
Solution :
The general form of quadratic equation is
To convert into complete square the form is
![a(x+d)^2+e=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/y1dg4zttx3505ywkuerpzg9ay4dw58tban.png)
Where,
and
![e=c-(b^2)/(4a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/m1rs2z07v8uldy771339hwjr20bo2fdev4.png)
Now, comparing the given equation
![x^2 + 30x + 21](https://img.qammunity.org/2019/formulas/mathematics/high-school/mrd0te22mpd3fkengc8aq8utvkjihhg3ol.png)
a=1 , b=30, c=21
![d=(b)/(2a)=(30)/(2(1))=15](https://img.qammunity.org/2019/formulas/mathematics/high-school/9r5rp477m8yaav0c37ad2l87xqyqvyic81.png)
![e=21-(30^2)/(4(1))=21-225=-204](https://img.qammunity.org/2019/formulas/mathematics/high-school/sl42wscwtxqysglwdf93ipxfai641hc49o.png)
Substitute in
![a(x+d)^2+e=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/y1dg4zttx3505ywkuerpzg9ay4dw58tban.png)
![1(x+15)^2+(-204)=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/p83hnyrgah4wil8b0r9eigb6ccaydvw91r.png)
![(x+15)^2-204=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/kixwuzqe1i4vqu8eo1u926cx5r3quuys2x.png)
[/tex]
By Completing the square we get,
The minimum value of this is when x+15 = 0 ⇒ x=-15
i.e,
Therefore, Option D is correct.
Minimum value of the function is at -204.