By definition, the potential energy is:
U = qV
Where,
q: load
V: voltage.
Then, the kinetic energy is:
K = mv ^ 2/2
Where,
m: mass
v: speed.
As the power energy is converted into kinetic energy, we have then:
U = K
Equating equations:
qV = mv ^ 2/2
From here, we clear the speed:
v = root (2qV / m)
Substituting values we have:
v = root ((2 * (1.60218 × 10 ^ -19) * 3600) /9.10939×10^-31))
v = 3.56 × 10 ^ 7 m / s
Then, the centripetal force is:
Fc = Fm
mv ^ 2 / r = qvB
By clearing the magnetic field we have:
B = mv / qr
Substituting values:
B = (9.10939 × 10 ^ -31) * (3.56 × 10 ^ 7) / (1.60218 × 10 ^ -19) * 0.059
B = 3.43 × 10 ^ -3 T
Answer:
A magnetic field that must be experienced by the electron is:
B = 3.43 × 10 ^ -3 T