First of all, let's calculate the equivalent resistance of the three resistors in parallel:
![(1)/(R_p)= (1)/(8 \Omega)+ (1)/(8 \Omega)+ (1)/(8 \Omega)= (3)/(8 \Omega)](https://img.qammunity.org/2019/formulas/physics/college/7xpcduunbmqtsxb518n6qx1hbc6r7xq9si.png)
![R_p= (8)/(3) \Omega=2.67 \Omega](https://img.qammunity.org/2019/formulas/physics/college/bct74l6cder52d8hh2euc2c8gwi3quxfvz.png)
The 2.0-ohm resistance is in series with these resistors, so the equivalent resistance of the circuit is
![R_(eq)=2.0 \Omega + R_p = 2.0 \Omega + 2.67 \Omega = 4.67 \Omega](https://img.qammunity.org/2019/formulas/physics/college/xvy4bgjoetp08zaphk6ex4yb0cihnewb2q.png)
And the current in the circuit can now be calculated by using Ohm's law:
![I= (V)/(R_(eq))= (20.0 V)/(4.67 \Omega)=4.28 A](https://img.qammunity.org/2019/formulas/physics/college/ct91ige2kkx1eikcgd4fks93bsdr7ggx28.png)