Answer:
Part 1)
Part a)
Part b)
(three different ways in the procedure)
Part 2)
First triangle (triangle a)
Part a)
Part b)
![A=35.11\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/p5wif3cmmyh5r5ijcygb2fe6ugt7p8ll5j.png)
Part c)
![B=129.89\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/h1g8spfgpyokwmghp5v177dubv4dkabavl.png)
Second triangle (triangle b)
Part a)
Part b)
![AC=10.77\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/1gyb2tgacgd767hbiqn01gcen3iitx0n3y.png)
Part c)
Explanation:
Part 1)
Part A
we know that
In the right triangle ABC
we have
![B=25\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/u8j63qqr7et9kj2l0o36lalbl664wuce1s.png)
![AC=b\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/sgyep3o93svxft3m0j222uz4in1b2bs8sw.png)
![AB=25\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/gtbcf1j43qguu8x5kuf08qlqwmvy9mw7ac.png)
Substitute and solve for b
![sin(25\°)=(b)/(25)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ylq7zljwu43i1f7dlqo7dcyoqpok548ihr.png)
Part B
First way
we know that
In the right triangle ABC
![cos(B)=(BC)/(AB)](https://img.qammunity.org/2019/formulas/mathematics/high-school/60hly9ydaaixnj10wmsgocat3i530cqa3r.png)
we have
![B=25\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/u8j63qqr7et9kj2l0o36lalbl664wuce1s.png)
![BC=a\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/8jkqcb5s12zw6n3hveiqh5cx2pijr64i71.png)
![AB=25\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/gtbcf1j43qguu8x5kuf08qlqwmvy9mw7ac.png)
Substitute and solve for a
![cos(25\°)=(a)/(25)](https://img.qammunity.org/2019/formulas/mathematics/high-school/nx8doapzermtmclad97tbpaz5pcjx88cet.png)
Second way
Applying the Pythagoras theorem
![c^(2)=a^(2) +b^(2)](https://img.qammunity.org/2019/formulas/mathematics/college/3csfyh88rttif4p6b4aimabpo6dvyugv1r.png)
we have
![c=25\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/31t6gkbu7aw2qc9ef8t5utn9msc5dm8bf4.png)
![b=10.57\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/nsbp2iwna2gkg13m374j6bhnjxbb8fwel1.png)
substitute and solve for a
![25^(2)=a^(2) +10.57^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/75u4nzm63dd5jdcjpcd67hwu9bbg14i2p1.png)
![a^(2)=25^(2)-10.57^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/tinr0yojtmi484nqz9mo82mpb5ay2vj2oc.png)
![a=22.66\ units[](https://img.qammunity.org/2019/formulas/mathematics/high-school/4q006s91xpobl0ewnm8j9u0yjgf6e7pb52.png)
Third way
we know that
In the right triangle ABC
![tan(B)=(AC)/(BC)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mqgowkj4j7ojnepbev9lvgo3sedz7ny6za.png)
we have
![B=25\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/u8j63qqr7et9kj2l0o36lalbl664wuce1s.png)
![BC=a\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/8jkqcb5s12zw6n3hveiqh5cx2pijr64i71.png)
![AC=b=10.57\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/68ujqlhpbb8r1awgeub8b2fdkiir79kmz6.png)
substitute and solve for a
![tan(25\°)=(10.57)/(a)\\ \\a=10.57/ tan(25\°)\\ \\a=22.66\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/agymmn3zf0zpbut8tzkz818sly8vgpiqbb.png)
Part 2)
triangle a
we have
![C=15\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/pq001i6im9vrbv34e65q8zbu1aio6sl08w.png)
Step 1
Find the measure of length side c
Applying the law of cosines
substitute
Step 2
Find the measure of angle A
Applying the law of sines
![(a)/(sin(A))=(c)/(sin(C))](https://img.qammunity.org/2019/formulas/mathematics/high-school/qnz6i8zvdb3yuco2hm5ae21ikf8966wwbz.png)
we have
![a=3\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/vg5vs079pgee503msfii5lonqi22y88qqn.png)
![C=15\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/pq001i6im9vrbv34e65q8zbu1aio6sl08w.png)
substitute and solve for A
Step 3
Find the measure of angle B
Remember that the sum of the internal angles of a triangle must be equal to
degrees
so
![A+B+C=180\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/5azutqqnhpgfa7d0kisuwy44qge3er3xu4.png)
we have
![C=15\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/pq001i6im9vrbv34e65q8zbu1aio6sl08w.png)
![A=35.11\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/p5wif3cmmyh5r5ijcygb2fe6ugt7p8ll5j.png)
substitute
triangle b
we have
![C=52\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/eiz8ydhvzez4ps1383fa6y2bm66xch7ir5.png)
![B=45\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/k06yscnv295s4u848atu054rfmmtsf45bj.png)
Step 1
Find the measure of angle A
Remember that the sum of the internal angles of a triangle must be equal to
degrees
so
![A+B+C=180\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/5azutqqnhpgfa7d0kisuwy44qge3er3xu4.png)
we have
![C=52\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/eiz8ydhvzez4ps1383fa6y2bm66xch7ir5.png)
![B=45\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/k06yscnv295s4u848atu054rfmmtsf45bj.png)
substitute
Step 2
Find the measure of side AC
Applying the law of sines
![(b)/(sin(B))=(c)/(sin(C))](https://img.qammunity.org/2019/formulas/mathematics/high-school/ku9nowxhyzfck7z5wp4jr01vgz1csivz2u.png)
we have
![b=AC](https://img.qammunity.org/2019/formulas/mathematics/high-school/85nvdl6oemjdhkxedgidn629ryalzg0kg9.png)
![c=12\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/7jkk4k9hn6eopf1wvra60jjuuayymgimbz.png)
![B=45\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/k06yscnv295s4u848atu054rfmmtsf45bj.png)
![C=52\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/eiz8ydhvzez4ps1383fa6y2bm66xch7ir5.png)
substitute and solve for b
![(b)/(sin(45\°))=(12)/(sin(52\°))\\ \\b=12*sin( 45\°)/sin( 52\°)\\ \\b=10.77\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/mqikbyh0j61qjlkpejan5f6lhkbha90aik.png)
Step 3
Find the measure of side BC
Applying the law of sines
![(a)/(sin(A))=(c)/(sin(C))](https://img.qammunity.org/2019/formulas/mathematics/high-school/qnz6i8zvdb3yuco2hm5ae21ikf8966wwbz.png)
we have
![a=BC](https://img.qammunity.org/2019/formulas/mathematics/high-school/3hvre14296jryayndfmkf55y3y30sauohd.png)
![c=12\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/7jkk4k9hn6eopf1wvra60jjuuayymgimbz.png)
![A=83\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/lbnymmogfkc49w0z46xb8nxecewc6i5pwr.png)
![C=52\°](https://img.qammunity.org/2019/formulas/mathematics/high-school/eiz8ydhvzez4ps1383fa6y2bm66xch7ir5.png)
substitute and solve for a
![(a)/(sin(83\°))=(12)/(sin(52\°))\\ \\a=12*sin(83\°)/sin(52\°)\\ \\a=15.11\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/p86wmb7qlyfth9h1uxsmbboyqig9zaa007.png)