First, we are going to add
![(1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/college/q5zg49mbtfrwobmmahi676fbgez56hhab0.png)
from both sides of the equation:
![cos(x)tan(x)- (1)/(2) + (1)/(2) = (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7hk9f4fbk8wtvk759ga897nmto1bqyj14l.png)
![cos(x)tan(x)= (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/emvsogjcv4j0blqmy9uejvv0cmb3kja56j.png)
Next, we are going to use the trig identity:
![tan(x)= (sin(x))/(cos(x))](https://img.qammunity.org/2019/formulas/mathematics/high-school/us2i7ewet5oy1pvr6c07gtt5c0891xk6u0.png)
to rewrite our expression:
![cos(x)tan(x)= (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/emvsogjcv4j0blqmy9uejvv0cmb3kja56j.png)
![cos(x) (sin(x))/(cos(x)) = (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/epadp6zsxgb8pds38x2nfvkfitin7lmqqs.png)
![sin(x)= (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/scwdbmekz0xi5uitfva08duno9k4qcu4w7.png)
Finally, using our unitary circle, we can infer that
![sin(x)= (1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/scwdbmekz0xi5uitfva08duno9k4qcu4w7.png)
from 0 to
![2 \pi](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xllvi5ecqkx1jofd4gvktklxnitl3xoryy.png)
when
![x= ( \pi )/(6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2pajkc98hhms59rli2ah1zy5s5hgo7mwd3.png)
and
![x= (5 \pi )/(6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ft0u9miqjeq6cdx3fjvl3usi05k3hw2b1z.png)
We can conclude that the solutions of the equation
cos (x) tan (x) -1/2=0 over the interval [0,2π] are:
![x=( \pi )/(6),(5 \pi )/(6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xv09knppqc9mncyikf5a6pcoj4bn71z6ee.png)