62.3k views
0 votes
What is the simplified base for the function f(x) = 2(27 cube rooted to the power of 2x

1 Answer

1 vote

Remember:
(a^b)^c=a^(bc) and
\sqrt[n]{a^b}=a^(b)/(n)

Not sure if you mean

AAA.
f(x)=2(\sqrt[3]{27})^(2x)

or

BBB.
2(\sqrt[3]{27^(2x)})

Or

CCC.
(2\sqrt[3]{27})^(2x)

If AAA, go to AAAAAA

If BBB, go to BBBBB

If CCC, go to CCCCC


AAAAAAAAA


f(x)=2(\sqrt[3]{27})^(2x)

Simplify inside parenthaees first


f(x)=2(\sqrt[3]{3^3})^(2x)


f(x)=2(3)^(2x)


f(x)=2((3)^2)^x


f(x)=2(9)^x

The base is 9

BBBBBBBB


f(x)=2(\sqrt[3]{27^(2x))


f(x)=2(\sqrt[3]{(3^3)^(2x))


f(x)=2(\sqrt[3}{3^(6x)})


f(x)=2(3^(6x)/(3))


f(x)=2(3^(2x))


f(x)=2(3^2)^x


f(x)=2(9)^x

The base is 9


CCCCCCC


f(x)=(2\sqrt[3]{27})^(2x)


f(x)=(2\sqrt[3]{3^3})^(2x)


f(x)=(2*3)^(2x)


f(x)=6^(2x)


f(x)=(6^2)^x


f(x)=36^x

Base is 36

If it’s
f(x)=2(\sqrt[3]{27})^(2x) or
f(x)=2(\sqrt[3]{27^(2x)}), the base is 9

If it’s
f(x)=(2\sqrt[3]{27})^(2x), the base is 36

User Josh Coady
by
6.7k points