The first step for solving this expression is to multiply the parenthesis.
![√(45) x^(2) + 2√(90) x + √(75)x + 2√(150)](https://img.qammunity.org/2019/formulas/mathematics/high-school/sbbdnt4fcujpc5n26e6ao0komu0pv12q7h.png)
Simplify the first radical.
![3√(5) x^(2) + 2√(90) x + √(75)x + 2√(150)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bzkyrl8e36vsy4tcy65iacup60yhwyp82e.png)
Simplify the second radical.
![3√(5) x^(2) + 2X3√(10) x + √(75)x + 2√(150)](https://img.qammunity.org/2019/formulas/mathematics/high-school/67gdn8h7yxfsl6b1v864nkrl928dw46o8x.png)
Simplify the third radical.
![3√(5) x^(2) + 2X3√(10) x + 5√(3)x + 2√(150)](https://img.qammunity.org/2019/formulas/mathematics/high-school/rl84ba0uxj18j4fw9bcq23xu6rst1phasp.png)
Simplify the final radical.
![3√(5) x^(2) + 2X3√(10) x + 5√(3)x + 10√(6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dcd052ewyunfhu6y5x5fz0xwmvu9377njp.png)
Lastly,, calculate the product of 2 × 3
![√(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/m7h9sfocfxvz2j1egpvvpn8sjt2624ychj.png)
x to get your final answer.
![3√(5) x^(2) + 6√(10) x + 5√(3)x + 10√(6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/zd2swyibjyl91sq9ufqxl3tsoe34rxg3wi.png)
Let me know if you have any further questions.
:)