29.3k views
1 vote
Express the complex number in trigonometric form. -2 + 2square root of three i

User Confuse
by
5.2k points

2 Answers

3 votes
4cos(120) + 4isin(120)
User DataByDavid
by
5.6k points
2 votes

Answer:

The required trigonometric form is
4(\cos(60)-i\sin(60))

Explanation:

Given : Complex number
-2+2√(3)i

To find : Express the complex number in trigonometric form?

Solution :

The complex number
a+ib trigonometric form is
r(\cos\theta+i\sin\theta)

Where,
r=√(a^2+b^2)

and
\theta=\tan^(-1)((b)/(a))

On comparing with given complex number
-2+2√(3)i

a=-2 and
b=2√(3)

Substitute the value,


r=√(a^2+b^2)


r=\sqrt{(-2)^2+(2√(3))^2}


r=√(4+12)


r=√(16)


r=4


\theta=\tan^(-1)((b)/(a))


\theta=\tan^(-1)((2\sqrt3)/(-2))


\theta=\tan^(-1)(-sqrt3)


\theta=\tan^(-1)(\tan(-60))


\theta=-60

Substituting all values in the formula,


r(\cos\theta+i\sin\theta)


4(\cos(-60)+i\sin(-60))


4(\cos(60)-i\sin(60))

Therefore, The required trigonometric form is
4(\cos(60)-i\sin(60))

User Andrey Pokhilko
by
5.4k points