Answer:
![m<CBA=102\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ur8hbdx7gdgm98769b2yc8oagvswv18kqa.png)
Explanation:
we know that
The internal angle of an equilateral triangle is equal to
![60\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/5nnwnum18qnj0trsl1bz6rvs8funzlqvk7.png)
The internal angle of a square is equal to
![90\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/19epnxcdcx76695hbiaj5xs94jphyetwor.png)
To find the internal angle of a regular pentagon, apply the formula
![S=[(n-2)180\°]/n](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1lfy6j192zifdduxsdss13f5zry1gcywip.png)
where
n is the number of sides (n=5)
substitute
![S=[(5-2)180\°]/5=108\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/srsb2sh3bdb8offehp9vb83ur6hni4wlls.png)
therefore
In this problem
![m<CBA+60\°+90\°+108\°=360\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8yjir1mee8t827poip17o3sh6m5sb0j9at.png)
![m<CBA+258\°=360\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/arpct390cghmzkwsdy9m1z5nufy3ezlhtg.png)
![m<CBA=360\°-258\°=102\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qgs8xupes1qx5g2ynmrt0uwj4sstkkc1vm.png)