Let
![A(t)](https://img.qammunity.org/2019/formulas/mathematics/college/tejn6wzvvvz6ymqscnz6xjgd5gfs0ry8aj.png)
be the amount of salt (in pounds) in the tank at time
![t](https://img.qammunity.org/2019/formulas/mathematics/college/wn85rs21zjpgno6qvvr81v18j25hkod1uk.png)
. We're given that
![A(0)=10\text{ lb}](https://img.qammunity.org/2019/formulas/mathematics/college/s8rfejk12tn0hwost4deh0mlvdacsei1k5.png)
.
The rate at which the amount of salt in the tank changes is given by the ODE
![A'(t)=\frac{2\text{ gal}}{1\text{ min}}\cdot\frac{0\text{ lb}}{1\text{ gal}}-\frac{1\text{ gal}}{1\text{ min}}\cdot\frac{A(t)\text{ lb}}{50+(2-1)t\text{ gal}}](https://img.qammunity.org/2019/formulas/mathematics/college/h3gsqgqozpin7dyhgc9mxzehlcjlpu4zsu.png)
![A'(t)+(A(t))/(50+t)=0](https://img.qammunity.org/2019/formulas/mathematics/college/hwlh7ltllqpe4rl5k5yczerawsv64yywhu.png)
![(50+t)A'(t)+A(t)=0](https://img.qammunity.org/2019/formulas/mathematics/college/hc7p8zdbap6eg5pdbmja47ej379bka9gs4.png)
![\bigg((50+t)A(t)\bigg)'=0](https://img.qammunity.org/2019/formulas/mathematics/college/5q2esukg3y5miwreexoitp1e7do5bc4dxx.png)
![(50+t)A(t)=C](https://img.qammunity.org/2019/formulas/mathematics/college/6s24uyr23vqy5zhlj80g4fnkqa213nx80k.png)
![A(t)=\frac C{50+t}](https://img.qammunity.org/2019/formulas/mathematics/college/i71o9c86rohd79ko1da8ecithqmz3zylzj.png)
Given that
![A(0)=10](https://img.qammunity.org/2019/formulas/mathematics/college/negoqju3zaeakrpa9r4a0khmo8s0p8ey11.png)
, we find that
![10=\frac C{50+0}\implies C=500](https://img.qammunity.org/2019/formulas/mathematics/college/etc9yvx5lv8q7c9dk3jdomfuzpx61hwo4s.png)
so that the amount of salt in the tank is described by
![A(t)=(500)/(50+t)](https://img.qammunity.org/2019/formulas/mathematics/college/20vps1ql4ek47jjdc2gk347fupbktokjco.png)
The tank will be filled when
![50+t=100](https://img.qammunity.org/2019/formulas/mathematics/college/225q0onw0dnxt12cw13vc9oi4ywlv7ygt4.png)
, or after
![t=50](https://img.qammunity.org/2019/formulas/mathematics/college/ov7xaxxctg8vfz1eytxefoerx53w6j72cm.png)
minutes. At this time, the amount of salt in the tank is
![A(50)=(500)/(50+50)=5\text{ lb}](https://img.qammunity.org/2019/formulas/mathematics/college/yp7khhk6hvmleze9yx3uica88wirzq4woy.png)