Answer:
The velocity vector is
and the position vector is
![\vec{r(t)}=3t \hat{i}-(2 t-5)\hat{j}+(-32(t^2 )/(2) +t+2)\hat{k}}](https://img.qammunity.org/2020/formulas/mathematics/college/x9yc8kh7d87nersdrxrjvqw1jc6jtfr1wz.png)
When t = 2 the position is
![\vec{r(2)}=6 \hat{i}+\hat{j}-60\hat{k}}](https://img.qammunity.org/2020/formulas/mathematics/college/v9i1uf50ojn4wdagzu6vkgqd9ti514w4mg.png)
Explanation:
To find the position function, you should integrate twice, each time using one of the initial conditions to solve for the constant of integration. The velocity vector is
![{\vec{v(t)}}=\int\limits {\vec{a(t)}} \, dt=\int\limits {-32 \hat{k}} \, dt\\\\\vec{v(t)}=-32t \hat{k}+C](https://img.qammunity.org/2020/formulas/mathematics/college/syrpv9a85ajoccaqpc93as2smtra7pafuu.png)
where
.
Letting t = 0 and applying the initial condition
![\vec{v(0)} = 3\hat{i} - 2\hat{j} + \hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/dl3o8t9sr7faiv9chdi7naop10798kwa6q.png)
![\vec{v(0)}=-32(0) \hat{k}+C\\\vec{v(0)}=C\\\\3\hat{i} - 2\hat{j} + \hat{k}=C_1 \hat{i}+C_2 \hat{j}+C_3 \hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/j0ioyrurzbobxsz90ja6igx9kq8oic24hz.png)
Therefore,
![C_1=3, C_2=-2,C_3=1](https://img.qammunity.org/2020/formulas/mathematics/college/3yx72ply8z45d9o41qmj2up1rm4gqixvlo.png)
So, the velocity at any time t is
![\vec{v(t)}=-32t \hat{k}+3 \hat{i}-2 \hat{j}+1\hat{k}\\\vec{v(t)}=3 \hat{i}-2 \hat{j}+(-32t+1)\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/ma01cut77o9rbqlxs70vwfuyf959xkl1xz.png)
Integrating once more produces
![\vec{r(t)}=\int\limits {\vec{v(t)}} \, dt=\int\limits {3 \hat{i}-2 \hat{j}+(-32t+1)\hat{k}} \, dt\\\\\vec{r(t)}=3t \hat{i}-2 t\hat{j}+(-32(t^2 )/(2) +t)\hat{k}}+C](https://img.qammunity.org/2020/formulas/mathematics/college/lnzfjdhfd25iuc5cdoifidtjejrwrkpu2r.png)
Letting t = 0 and applying the initial condition
![\vec{r(0)} = 5\hat{j} + 2\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/1nzxtluw0dq3pszoqzeg1h3dwmscr0blqy.png)
![\vec{r(0)}=3(0) \hat{i}-2 (0)\hat{j}+(-32((0)^2 )/(2) +(0))\hat{k}}+C\\\vec{r(0)}=C\\\\5\hat{j} + 2\hat{k}=C_1 \hat{i}+C_2 \hat{j}+C_3 \hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/a6cq3u1e0ik1jhbkrn9hza2iioue4k1ba8.png)
Therefore,
![C_1=0, C_2=5,C_3=2](https://img.qammunity.org/2020/formulas/mathematics/college/skt2xmjhobatt5cb480g4crdm5s0g994a7.png)
The position vector is
![\vec{r(t)}=3t \hat{i}-2 t\hat{j}+(-32(t^2 )/(2) +t)\hat{k}}+5 \hat{j}+2 \hat{k}\\\\\vec{r(t)}=3t \hat{i}-(2 t-5)\hat{j}+(-32(t^2 )/(2) +t+2)\hat{k}}](https://img.qammunity.org/2020/formulas/mathematics/college/68q3o8zpdjg8kprkgq4zikt7naeq4teujr.png)
When t = 2 the position is
![\vec{r(2)}=3(2) \hat{i}-(2(2)-5)\hat{j}+(-32((2)^2 )/(2) +(2)+2)\hat{k}}\\\vec{r(2)}=6 \hat{i}+\hat{j}-60\hat{k}}](https://img.qammunity.org/2020/formulas/mathematics/college/evyad1on6sczqqcnc8tt1xrkwbc676nt32.png)