Answer:
a) 2
b) 3
c) 1
Explanation:
The standard error (SE) is given as:
SE = s ÷ √n
here,
s = √[SS ÷ (n - 1)]
Therefore,
We get,
SE =
![\sqrt{(SS)/(n(n-1))}](https://img.qammunity.org/2020/formulas/mathematics/college/tqphrs6nrvedhieziysufu4yqocfspgsc4.png)
Therefore,
For a) n = 4 with SS = 48
SE =
![\sqrt{(48)/(4(4-1))}](https://img.qammunity.org/2020/formulas/mathematics/college/v50wp5mmr3xsr3tufp1uyq9crwt2pxz5qr.png)
or
SE = √4
or
SE = 2
For b) n = 6 with SS = 270
SE =
![\sqrt{(270)/(6(6-1))}](https://img.qammunity.org/2020/formulas/mathematics/college/uwe861ukml77rlzvyp1c3fxe1rkuik0mqo.png)
or
SE = √9
or
SE = 3
For c) n = 12 with SS = 132
SE =
![\sqrt{(132)/(12(12-1))}](https://img.qammunity.org/2020/formulas/mathematics/college/a29068t2kw0bbdf3y2x0wvahbybblxg77j.png)
or
SE = √1
or
SE = 1