To solve this problem, we will apply the concepts related to the linear deformation of a body given by the relationship between the load applied over a given length, acting by the corresponding area unit and the modulus of elasticity. The mathematical representation of this is given as:
![\delta = (PL)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/z853uf58gt9oor2x30l4hgrxojhbxaon6x.png)
Where,
P = Axial Load
l = Gage length
A = Cross-sectional Area
E = Modulus of Elasticity
Our values are given as,
l = 3.5m
D = 0.028m
![P = 68*10^3 N](https://img.qammunity.org/2020/formulas/physics/college/6pvpxacnnkfn9mzuob0cu5ibmcy69qwj4f.png)
E = 200GPa
![A = (\pi)/(4)(0.028)^2 \rightarrow 0.0006157m^2](https://img.qammunity.org/2020/formulas/physics/college/56s272erp64t3xtgc4hbok456ncjgky937.png)
Replacing we have,
![\delta = (PL)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/z853uf58gt9oor2x30l4hgrxojhbxaon6x.png)
![\delta = (( 68*10^3)(3.5))/((0.0006157)(200*10^9))](https://img.qammunity.org/2020/formulas/physics/college/kqqtl4my79k667xhubpkjo4tnhn2xkzgz5.png)
![\delta = 0.001932m](https://img.qammunity.org/2020/formulas/physics/college/ftm0qw4kfu7o0tgp23oj3qgsec77y3wf8j.png)
![\delta = 1.93mm](https://img.qammunity.org/2020/formulas/physics/college/zj2er4r1ajhzyxlbemns4nxcotynd20kzy.png)
Therefore the change in length is 1.93mm