Answer:
a) E(x)=2.5 V(x)=1.59
b) E(R)=17 V(R)=6.36
c) The probability that, when the four make their orders, everyone gets what they ordered is P=0.66.
Explanation:
a) The mean E(x) can be calculated as:
![E(x)=\sum^4_(i=0) p_ix_i\\\\E(x)=0.09*0+0.15*1+0.18*2+0.33*3+0.25*4\\\\E(x)=0.00+0.15+0.36+0.99+1.00\\\\E(x)=2.5](https://img.qammunity.org/2020/formulas/mathematics/college/hkgm6klv9mdl84dikuupkvwipl5j2bxxca.png)
The variance V(x) can be calculated as:
![V(x)=\sum^4_(i=0) p_i(x_i-\bar x)^2\\\\V(x)=0.09(0-2.5)^2+0.15(1-2.5)^2+0.18(2-2.5)^2+0.33(3-2.5)^2+0.25(3-2.5)^2\\\\V(x)=0.09*6.25+0.15*2.25+0.18*0.25+0.33*0.25+0.25*2.25\\\\V(x)=0.5625+0.3375+0.045+0.0825+0.5625\\\\V(x)=1.59](https://img.qammunity.org/2020/formulas/mathematics/college/li5weu07i6n5zkdrgbt5cxfac2z6ru7u5l.png)
b) The revenue can be expressed as:
![R=5*x+3*(4-x)](https://img.qammunity.org/2020/formulas/mathematics/college/vztfacktfzu4m9dt75t960zw7l35hpuzmk.png)
Then, the expected value of R canbe expressed in function of x:
![E(R)=E(5x+3(4-x))=5E(x)+3(4-E(x))\\\\E(R)=5*2.5+3(4-2.5)=12.5+4.5=17](https://img.qammunity.org/2020/formulas/mathematics/college/35usc6qck4qi4int6f6n7lc9n26cepm64v.png)
The expected revenue is $17.
The variance of R is
![V(R)=V(5*x+3(4-x))=V(5x+12-3x)=V(2x+12)\\\\V(R)=V(2x)+V(12)=2^2V(x)+0=4*1.59\\\\V(R)=6.36](https://img.qammunity.org/2020/formulas/mathematics/college/cns2d2tomqvldro4k20vtoi1j68kex7c7i.png)
c) In the case there are only 3 Cokes and 3 Sprites available, the only orders that can not be fullfilled are when X=0 (they order 4 Sprites) and X=4 (they order 4 Cokes).
The probability of these events is:
![P(x=0,x=4)=P(x=0)+P(x=4)=0.09+0.25=0.34](https://img.qammunity.org/2020/formulas/mathematics/college/7or691h4q2m0abfiwxnwhgbgd8jt6nke4n.png)
So, the probability of everyoned getting what they ordered is:
![P=1-P(x=0,x=4)=1-0.34=0.66](https://img.qammunity.org/2020/formulas/mathematics/college/yxjdzlgnubatnl27gzjxllt4sdglnsasqt.png)
The probability that, when the four make their orders, everyone gets what they ordered is P=0.66.