Answer:
The temperature coefficient of resistivity for a linear thermistor is
![1.38*10^(-3)^(\circ)C^(-1)](https://img.qammunity.org/2020/formulas/physics/college/ejx45edcoz38jf6dt0yiv26wtbt462q93k.png)
Step-by-step explanation:
Given that,
Initial temperature = 0.00°C
Resistance = 75.0 Ω
Final temperature = 525°C
Resistance = 275 Ω
We need to calculate the temperature coefficient of resistivity for a linear thermistor
Using formula for a linear thermistor
![R=R_(0)(1+\alpha\Delta T)](https://img.qammunity.org/2020/formulas/physics/college/x0bvhj1zbf5y5xx7w5zarhh9tb2i21mdj2.png)
![R=R_(0)+R_(0)\alpha\Delta T](https://img.qammunity.org/2020/formulas/physics/college/99fga07lgiihimxfiygl8wa6oub29gt6sp.png)
![\alpha=(R-R_(0))/(R_(0)\Delta T)](https://img.qammunity.org/2020/formulas/physics/college/qtl6e1s0d7hy6wzfm1i4pjn29c3id9ke75.png)
Put the value into the formula
![\alpha=(275-75)/(275*(525-0))](https://img.qammunity.org/2020/formulas/physics/college/iflkone0qj2voytck9apwhz2085vz8kg5j.png)
![\alpha=1.38*10^(-3)^(\circ)C^(-1)](https://img.qammunity.org/2020/formulas/physics/college/6hvhxb8yhqnloty90hlvii1cen8twp4ikj.png)
Hence, The temperature coefficient of resistivity for a linear thermistor is
![1.38*10^(-3)^(\circ)C^(-1)](https://img.qammunity.org/2020/formulas/physics/college/ejx45edcoz38jf6dt0yiv26wtbt462q93k.png)