Answer:
The rate of entropy production for within the turbine is 0.441 kJ/kgK
The Isentropic efficiency of the turbine is 80.76%
Step-by-step explanation:
Given:
= 6MPa
=
![600^(\circ)C](https://img.qammunity.org/2020/formulas/engineering/college/7uqumc4t1avo4jb9mx41r71p8xd0gsblx8.png)
= 3660kJ/kg
= 7.17Kj/kgK
= 20kPa
= 1
= 7.91kJ/kgK
= 2610kJ/kg
Isentrophic properties of stream
= 20kPa
=s_1
=7.17Kj/kgK
= 2360kJ/kg
Entropy generation of the stream:
=>
![S_(g e n, c v)=\frac{\dot{S}_(g e n)}{\dot{m}}](https://img.qammunity.org/2020/formulas/physics/college/8oe305r81bcctw13vbr9s193vtmni0wls0.png)
=>
=>
![\frac{\frac{W_(c v)}{\dot{m}}+\left(h_(2)-h_(1)\right)}{T_(b)}+\left(s_(2)- s_(1)\right)](https://img.qammunity.org/2020/formulas/physics/college/votdez4uecm86l34i2qg4tcaenu6pryzwj.png)
=>
![((2000)/(2.083)+(2610-3660))/(300 K)+(7.91-7.17)](https://img.qammunity.org/2020/formulas/physics/college/x98sm9k9u0q5ozffzzqurjgmk7rrc66frg.png)
=>
![(960.153+(-1050))/(300 K)+(0.74)](https://img.qammunity.org/2020/formulas/physics/college/hj2jkes42nqji0kzolgv7vfmw4bx1ug0mb.png)
=>
![(-89.847)/(300 K)+(0.74)](https://img.qammunity.org/2020/formulas/physics/college/tizcqvt9jvyyceg12kqmc5re2m2k8rse7e.png)
=> -0.299+(0.74)
=>0.441 kJ/kgK
Isentrophic efficeny of the turbine
=>
![\eta=(h_(1)-h_(2))/(h_(1)-h_(2 s))](https://img.qammunity.org/2020/formulas/physics/college/1gj16mo24b9ye6revyjfc1wkrw3ry8x1h1.png)
=>
![(3660-2610)/(3660-2360)](https://img.qammunity.org/2020/formulas/physics/college/hag8u59j13o0lnwtsnxvj5ug4uz9pmq70l.png)
=>
![(1050)/(1300)](https://img.qammunity.org/2020/formulas/physics/college/e12au8fzao04q4a68jpo29adj7r2o1295m.png)
=>0.8076
=>80.76%