92.2k views
1 vote
SOLUTION We observe that f '(x) = -1 / (1 + x2) and find the required series by integrating the power series for -1 / (1 + x2).

1 Answer

4 votes

Answer:

Required series is:


\int{(-1)/(1+x^(2)) \, dx =-x+(x^(3))/(3)-(x^(5))/(5)+(x^(7))/(7)+.....

Explanation:

Given that


f'(x) = -(1)/(1 + x^(2)) ---(1)

We know that:


(d)/(dx)(tan^(-1)x)=(1)/(1+x^(2)) ---(2)

Comparing (1) and (2)


f'(x)=-(tan^(-1)x) ---- (3)

Using power series expansion for
tan^(-1)x


f'(x)=-tan^(-1)x=-\int {(1)/(1+x^(2)) \, dx


= -\int{ \sum\limits^( \infty)_(n=0) (-1)^(n)x^(2n)} \, dx


= -\sum{ \int\limits^( \infty)_(n=0) (-1)^(n)x^(2n)} \, dx


=-[c+\sum\limits^( \infty)_(n=0) (-1)^(n)(x^(2n+1))/(2n+1)]


=C+\sum\limits^( \infty)_(n=0) (-1)^(n+1)(x^(2n+1))/(2n+1)


=C-x+(x^(3))/(3)-(x^(5))/(5)+(x^(7))/(7)+.....

as


tan^(-1)(0)=0 \implies C=0

Hence,


\int{(-1)/(1+x^(2)) \, dx =-x+(x^(3))/(3)-(x^(5))/(5)+(x^(7))/(7)+.....

User Norbert Huurnink
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories