Answer:
1728 rev/sec
Step-by-step explanation:
The expression for the gravitational force is given by
F_g=mg_1
g_1=0.9g (Given)
therefore,
![F_g=0.9mg](https://img.qammunity.org/2020/formulas/physics/high-school/81mn37c69ugk92lnnx5zrwi9qixrqch0kl.png)
The centripetal force balances this gravitational force to keep the space station in equilibrium.
Hence we can write
![(mv^2)/(r) =0.9mg](https://img.qammunity.org/2020/formulas/physics/high-school/qqcrbobanozlae5tioevvuentjpzy5v5cs.png)
Rearrange the above equation in terms of velocity
![v=\sqrt{(0.9mgr)/(m) }](https://img.qammunity.org/2020/formulas/physics/high-school/u2q81z1vnzwi6yuofwsz6nwc5jq7hwcg38.png)
⇒
![v=√(0.9gr)](https://img.qammunity.org/2020/formulas/physics/high-school/9y9agfa7h85xtdcxl3mwl3qcajbgqfwid5.png)
putting the values we get
![v=\sqrt{(0.9(9.81)(1100))/(2) }](https://img.qammunity.org/2020/formulas/physics/high-school/y6dasiezzn69xycfohr44b0mxjhik50meb.png)
v=69.65 m/sec
the rotational speed can be calculated as or frequency of rotation
![f= (v)/(2\pi r)](https://img.qammunity.org/2020/formulas/physics/high-school/oxxu0pf8lvduw7c9wiprp8j1ljq6x0u7vf.png)
putting values we get
![f= (69.65)/(2\pi 5500)](https://img.qammunity.org/2020/formulas/physics/high-school/eivkptwwbgw0qnwvyhtez33fgo5nrvudr9.png)
f= 0.02 rev/sec
meaning 0.02 rev per second
therefore no. or revolution per day
= 0.02×24×3600= 1728 rev/sec