Answer:
35870474.30504 m
Step-by-step explanation:
r = Distance from the surface
T = Time period = 24 h
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
m = Mass of the Earth = 5.98 × 10²⁴ kg
Radius of Earth =
![6.38* 10^6\ m](https://img.qammunity.org/2020/formulas/physics/college/r64i56skuwpq6u11yfoqqwbgu9x7tzrgw7.png)
The gravitational force will balance the centripetal force
![(GMm)/(R^2)=m(v^2)/(R)\\\Rightarrow v=\sqrt{(GM)/(R)}](https://img.qammunity.org/2020/formulas/physics/college/o5hrodn0md0viwpof4mlhzo5to84qdfivt.png)
![T=(2\pi r)/(v)\\\Rightarrow T=\frac{2\pi r}{\sqrt{(GM)/(r)}}](https://img.qammunity.org/2020/formulas/physics/college/asbfqo3sz54jbpwjb0hamw1hhjmgzv25ax.png)
From Kepler's law we have relation
![T^2=(4\pi^2r^3)/(GM)\\\Rightarrow r^3=(T^2GM)/(4\pi^2)\\\Rightarrow r=\left(((24* 3600)^2* 6.67* 10^(-11)* 5.98* 10^(24))/(4\pi^2)\right)^{(1)/(3)}\\\Rightarrow r=42250474.30504\ m](https://img.qammunity.org/2020/formulas/physics/high-school/ysbbvjplusz7gva1bo1xsrmhpc1xl6uqsh.png)
Distance from the center of the Earth would be
![42250474.30504-6.38* 10^6=\mathbf{35870474.30504\ m}](https://img.qammunity.org/2020/formulas/physics/high-school/8y5tvn8gzcyoq6yzdmhe9aiwbv61w6s3yg.png)