Answer:
Part 1)
![m\angle P=48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/q82vjx1w481a99s48zy8ereqycxjdz62vi.png)
Part 2)
![m\angle PST=131.99^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/zfc80m6due8i993sz0ky53s1vc9lclb3we.png)
Part 3)
![m\angle T=131.99^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/osxzva32fim3mslrxkuzf09lj5m7ihh504.png)
Part 4)
![m\angle R=48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/w3o7k95o8dhq9en2ms98chvu2hv5e5a1rw.png)
Part 5)
, or
![PS=6.7\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/tvtliam5kdmt2nzuwrxuv3c7tin3z7wt5m.png)
Part 6)
, or
![TR=6.7\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/wxyx9b8zutuyy73uytydoaboei5b08j9fj.png)
Explanation:
see the attached figure to better understand the problem
In this problem we have an isosceles trapezoid
Part 1) Find the measure of angle P
Find the value of side PD
we have that
---> by addition segment postulate
----> by isosceles trapezoid
so
![PR=2PD+ST\\PD=(PR-ST)/2](https://img.qammunity.org/2020/formulas/mathematics/high-school/p1poimzor9bbo6ymfl1csl2gzjf1zcq3ed.png)
substitute the given values
![PD=(24-15)/2](https://img.qammunity.org/2020/formulas/mathematics/high-school/gxdb00bugpss832xwjfnkocl9z69xy1l4t.png)
![PD=4.5\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/vh9j7huph0ohlgefpftfjgbhrb0dr0ehxx.png)
In the right triangle PSD
![tan(P)=(SD)/(PD)](https://img.qammunity.org/2020/formulas/mathematics/high-school/j2ykbzpi8qearxz3cs2utkyqcjlfp2tm7z.png)
![P=tan^(-1)((SD)/(PD))](https://img.qammunity.org/2020/formulas/mathematics/high-school/hgsjbdlwk1wt4x1iiexouekr6ryhcud6rm.png)
substitute the given values
![m\angle P=tan^(-1)((5)/(4.5))](https://img.qammunity.org/2020/formulas/mathematics/high-school/ap6bc6sq0s0p32stznhz5ltblnr7s3zgvb.png)
![m\angle P=48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/q82vjx1w481a99s48zy8ereqycxjdz62vi.png)
Part 2) Find the measure of angle PST
we know that
In a trapezoid ST ║ RP
so
---> by consecutive interior angles
we have
![m\angle P=48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/q82vjx1w481a99s48zy8ereqycxjdz62vi.png)
substitute
![48.01^o+m\angle PST=180^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/e4okc9i6ul5obkxroflqdjt0gdn4gahn1r.png)
![m\angle PST=180^o-48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/w7qzymk5spzovj6kp3kg6sfipvnh0rr9ba.png)
![m\angle PST=131.99^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/zfc80m6due8i993sz0ky53s1vc9lclb3we.png)
Part 3) Find the measure of angle T
we know that
In this problem we have an isosceles trapezoid
so
![m\angle T=m\angle S](https://img.qammunity.org/2020/formulas/mathematics/high-school/v7t17skvxdd1r2c5wepbjzqu61a9oc277v.png)
we have
![m\angle PST=m\angle S=131.99^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/2wcpc30erexr3gulbe7fsrr6s0v5m970dr.png)
therefore
![m\angle T=131.99^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/osxzva32fim3mslrxkuzf09lj5m7ihh504.png)
Part 4) Find the measure of angle R
we know that
In this problem we have an isosceles trapezoid
so
![m\angle R=m\angle P](https://img.qammunity.org/2020/formulas/mathematics/high-school/cgxhmz7c18zqfdn26z4th98szs4klr7vem.png)
we have
![m\angle P=48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/q82vjx1w481a99s48zy8ereqycxjdz62vi.png)
therefore
![m\angle R=48.01^o](https://img.qammunity.org/2020/formulas/mathematics/high-school/w3o7k95o8dhq9en2ms98chvu2hv5e5a1rw.png)
Part 5) Find the measure of segment PS
we know that
In the right triangle PSD
Applying the Pythagorean Theorem
![PS^2=SD^2+PD^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/j8nengw4j6u6ceqi3gjvat9dzp4flpq0i9.png)
substitute the given values
![PS^2=5^2+4.5^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/n6e73luto1mxudeglchn8c52w2ossu9gji.png)
![PS^2=45.25](https://img.qammunity.org/2020/formulas/mathematics/high-school/o5w5achulf60k5w2wdepk6aa39v09o57yx.png)
![PS=√(45.25)\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/cjmqpjd0a47xobyn17wp1zpmp23zv1jc73.png)
![PS=6.7\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/tvtliam5kdmt2nzuwrxuv3c7tin3z7wt5m.png)
Part 6) Find the measure of segment TR
we know that
TR=PS ---> by isosceles trapezoid
we have
![PS=√(45.25)\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/cjmqpjd0a47xobyn17wp1zpmp23zv1jc73.png)
therefore
![TR=√(45.25)\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/9c7e1sbqsjkrv2potptp16pl5mb2o3qn4e.png)
![TR=6.7\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/wxyx9b8zutuyy73uytydoaboei5b08j9fj.png)