To solve this problem it is necessary to apply the concepts related to uniaxial deflection for which the training variable is applied, determined as
![\delta = (Pl)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/slt8q13wvzz552c5ci5p6l8lp04prbkyn8.png)
Where,
P = Tensile Force
L= Length
A = Cross sectional Area
E = Young's modulus
PART A) The elongation of the bar in a length of 200 mm caliber, could be determined through the previous equation, then
![\delta = (Pl)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/slt8q13wvzz552c5ci5p6l8lp04prbkyn8.png)
![\delta = ((75*10^3)(200))/((\pi/4*22^2)(200*10^3))](https://img.qammunity.org/2020/formulas/physics/college/bdd09t2mcilyn6mpfmlqlbpi7zaxgbjpdq.png)
![\delta = 0.1973mm](https://img.qammunity.org/2020/formulas/physics/college/d61dybhq9fvlyjbno4t8m4rcxd0m3sgpf3.png)
Therefore the elongaton of the rod in a 200mm gage length is
![0.1973mm](https://img.qammunity.org/2020/formulas/physics/college/l4oulrk3c1n62gos02cpy3fbrkpdaramn7.png)
PART B) To know the change in the diameter, we apply the similar ratio of the change in length for which,
![\upsilon = (l_(a))/(l_(s))](https://img.qammunity.org/2020/formulas/physics/college/tryhuanmh79julfg4jln6wscxhzs9v9qsb.png)
Where,
Poission's ratio
= Lateral strain
= Linear strain
![\upsilon = (\delta/d)/(\delta/l)](https://img.qammunity.org/2020/formulas/physics/college/ub6vt5rzmd3px3vfb160egdag72iak2meo.png)
![0.3 = (\delta/22)/(0.1973/200)](https://img.qammunity.org/2020/formulas/physics/college/r1aaq7sg1eoouwqrc0bd7zykyrfc1dm3qo.png)
![0.3((0.1973)/(200)) = (\delta)/(22)](https://img.qammunity.org/2020/formulas/physics/college/xjkw2wk75kq40xzwgn408o5wscajx21x4k.png)
![\delta = 6.5109*10^(-3)mm](https://img.qammunity.org/2020/formulas/physics/college/r3m15d1mo38eaob5aczsyi50ga20l0xxmm.png)
Therefore the change in diameter of the rod is
![6.5109*10^(-3)mm](https://img.qammunity.org/2020/formulas/physics/college/elm0gx7k33kjbfrhsqg1i4derelimtcry1.png)