Answer:
71.42857 kgm²
1311.81946 kg
5.082 rad/s
Step-by-step explanation:
F = Force = 200 N
R = Radius = 0.33 m
= Angular acceleration is 0.924 rad/s²
Moment of inertia is given by
![I=(FR)/(\alpha)\\\Rightarrow I=(200* 0.33)/(0.924)\\\Rightarrow I=71.42857\ kgm^2](https://img.qammunity.org/2020/formulas/physics/college/mydcrl5yavqu5gcejahaqetwbk3yvs7hpt.png)
The moment of inertia of the wheel is 71.42857 kgm²
Moment of inertia of a solid cylindrical wheel is given by
![I=(1)/(2)mR^2\\\Rightarrow m=(2I)/(R^2)\\\Rightarrow m=(2* 71.42857)/(0.33^2)\\\Rightarrow m=1311.81946\ kg](https://img.qammunity.org/2020/formulas/physics/college/c04uw09ov4ci8ej47btebsrn6ladgo0yho.png)
The mass of the wheel is 1311.81946 kg
Rotational impulse is given by
![I_r=\tau t\\\Rightarrow I_r=FRt](https://img.qammunity.org/2020/formulas/physics/college/ux5s4o6slkgo2kzifufl529rp5bantffge.png)
Also
![I_r=I(\omega_f-\omega_i)\\\Rightarrow I_r=I(\omega_f-0)\\\Rightarrow I_r=I\omega_f\\\Rightarrow \omega_f=(I_r)/(I)](https://img.qammunity.org/2020/formulas/physics/college/9i18uw1tkjscmc7vkan3fsam3ektg4dn7y.png)
![\omega_f=(FRt)/(I)\\\Rightarrow \omega_f=(200* 0.33* 5.5)/(71.42857)\\\Rightarrow \omega_f=5.082\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/y5fp9p1by3m4wgneik4dsow55aq58mc8tn.png)
The angular speed is 5.082 rad/s