163k views
4 votes
In a quadrilateral ABCD, angle A + angle D = 90°. Prove that AC^2 + BD^2 = BC^2 + AD^2​

User Wayne Chiu
by
9.1k points

1 Answer

3 votes

Answer:


AD^(2)+BC^(2)=AE^(2)+ED^(2)+BE^(2)+EC^(2)


AC^(2)+BD^(2)=AE^(2)+EC^(2)+BE^(2)+ED^(2)

Hence prove.


AC^(2)+BD^(2)=BC^(2)+AD^(2)

Explanation:

Given:

∠A + ∠D = 90°

We are prove to that


AC^(2)+BD^(2)=BC^(2)+AD^(2)

Solution:

See required figure in attached file.

We know sum of the all angles of a triangle is 180°.

So, in triangle AED.

∠A + ∠E + ∠D = 180°

∠E + (∠A + ∠D) = 180°

Now, we substitute ∠A + ∠D = 90° in above equation.

∠E + 90° = 180°

∠E = 180° - 90°

∠E = 90°

Using Pythagoras Theorem for triangle ADE and triangle BEC.


AD^(2)=AE^(2)+ED^(2)


BC^(2)=BE^(2)+EC^(2)

Now, we add both above equations.


AD^(2)+BC^(2)=AE^(2)+ED^(2)+BE^(2)+EC^(2)--------(1)

Similarly, Using Pythagoras Theorem for triangle AEC and triangle BED.


AC^(2)=AE^(2)+EC^(2)


BD^(2)=BE^(2)+ED^(2)

Now, we add both above equations.


AC^(2)+BD^(2)=AE^(2)+EC^(2)+BE^(2)+ED^(2)--------(2)

We get From equation 1 and equation 2.


AC^(2)+BD^(2)=BC^(2)+AD^(2)

Hence prove,


AC^(2)+BD^(2)=BC^(2)+AD^(2)

In a quadrilateral ABCD, angle A + angle D = 90°. Prove that AC^2 + BD^2 = BC^2 + AD-example-1
User Skinkelynet
by
8.9k points

No related questions found