Answer:
The signa notation to represent the first five ten f(x) is given by
![f(x)=\sum\limits^(5)_(n=1)a_n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oenvdqsmivypmchcwe0qpjvhwryqist188.png)
Explanation:
Given sequence is -5, -9, 13...
Let f(x) be the given sequence and is denoted by
![f(x)=\{-5,-9,-13,...\}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u1r4z9lgjk63zwg7nq7ubr9n8yfip86w52.png)
Let the first term be
term be
![a_3,...](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jr1we77dubr1tb8blofmjvjcm7g4g04lzx.png)
ie,
![a_1=-5,a_2=-9, a_3=-13,...](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5o4v9bxk64kdzcjmjludciwxd4qbuwsgyw.png)
To find the common difference d:
![d=a_2-a_1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/23fvfcvh4hgrr1vbqh1zust89xwntltkcl.png)
![=-9-(-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ftb9hd2k5yn4go7d18rviabhdocf3ij71z.png)
![=-9-(+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fhfba5kn2eud2nd1pinpeewfapbgyfiurd.png)
![d=-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9ic8gyi3bz5i2kcpptta6326y4yr9q2uv.png)
![d=a_3-a_2](https://img.qammunity.org/2020/formulas/mathematics/high-school/bhm2esd48ear5b2xdo79kofc8hgq3b0njv.png)
![=-13-(-9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qgi7w0pu6jwbrftpmt4xcqmltrij26q0ub.png)
![=-13+9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g49hdg0ytis10mfnpys8oxek0z83ehjsmn.png)
![d=-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9ic8gyi3bz5i2kcpptta6326y4yr9q2uv.png)
Therefore the common difference d is -4 for given sequence f(x) with
and d=-4, the seqence f(x) is an arithmetic sequence
By defintion of arithmetic sequence
![a_n=a+(n-1)d\hfill(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8vqu1ia60is9okq2kcanmrlk00d0xh8dlc.png)
Now to find
:
put n=4 in equation (1)
![a_4=a+(4-1)d](https://img.qammunity.org/2020/formulas/mathematics/middle-school/401rzny5avn09av416xdsu0qlwne2o1h43.png)
[since a=-5, d=-4]
![=-5-12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y6fav2247d239f7uyd0b0x5jt04d6tengs.png)
![a_4=-17](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pmxp36r79fqylk0nme3v8sarmtarvwlolj.png)
in equation (1)
![a_5=a+(5-1)d](https://img.qammunity.org/2020/formulas/mathematics/college/oyyty5nbhb5cagixlyslwg8oaosepwns6s.png)
[since a=-5, d=-4]
![=-5-16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/khyzxfvz6imqgbqzdwrnivd6bjby7jz23d.png)
![a_5=-21](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5o2kn81zyy80ls3v5fu4dlaqn6ff461fbp.png)
Therefore
and
![a_5=-21](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5o2kn81zyy80ls3v5fu4dlaqn6ff461fbp.png)
Therefore
![f(x)=\{-5,-9,-13,-17,-21,...\}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zmy1w7nsnefh2qs3n9zlzf89pcpl6y5bk5.png)
Now to represent the sum of the first five terms of f(x) using sigma notation as below
![f(x)=\sum_(n=1)^5 a_n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ils6cbbix5c3e7q95xvrywqsz6lzuaya4s.png)
where
![\sum_(n=1)^5 a_n=a_1+a_2+a_3+a_4+a_5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9qqlazyg1ecyju9esz3l1sy3axhuioxllw.png)
![-5-9-13-17-21](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z9w9427ahq9r1kll5sgme6ti43pkqjv2j4.png)
![\sum_(n=1)^5 a_n=-65](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3wuib6iq5boh4evalr5c4efr7yrq322hht.png)