Answer:
1) Option c) is correct ie., 5 real and o non-real
2) Option b) is correct ie., (4,
,
, 2,2)
Explanation:
Given polynomial function is
![f(x)=x^5-3x^3-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/15j7yrtwdxvevfztg1ger6v5lfvmc5spmo.png)
To find zeros equate f(x) to zero ie.,
![f(x)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rur55zla9ujowurgyoxeoex2g38c6hzs1g.png)
![x^5-3x^3-2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qy2cfllom2rdrcz4jmuhkys5mygbz9p1tm.png)
By synthetic division
| 1 0 -3 0 -2
-1 | 0 -1 1 2 2
|_________________
1 -1 -2 2 0
Therefore x=-1 is a zero
![x^3-x^2-2x+2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x16rhv906ahxcwmfvyjaywmoo64psjmk43.png)
| 1 -1 -2 2
1 | 0 1 0 2
|___________________
1 0 -2 0
x=1 is the zero
![x^2 -2 =0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mog5qn38wpsvasp04rwue8dl7qnd5v53j2.png)
![x=\pm√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k6lvcru9uotmrzmntginywi8qsgrryf9qu.png)
and
Option c) is correct ie., 5 real and o non-real
2) Given polynomial function is
![f(x)=(x-4)(2x-1)^2(x-2)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/392nodr63x9zt6devcrg6pjbjasdwjz0k5.png)
To find zeros equate f(x) to zero ie.,
![f(x)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rur55zla9ujowurgyoxeoex2g38c6hzs1g.png)
![(x-4)(2x-1)^2(x-2)^2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bzwvp9ala5m6ch2wjmb01cckbzbmkumguo.png)
(or)
or
![(x-2)^2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q3p9aje1h4hfqn9q29xmqe239eimiu3lm7.png)
Therefore x=4,
of multiplicity of 2 and x=2 multiplicity of 2
Option b) is correct ie., (4,
,
, 2,2)