174k views
4 votes
Roots of -2x^2 -6x+5=0

User Quality
by
8.3k points

1 Answer

5 votes

For this case we have the following quadratic equation:


-2x ^ 2 -6x + 5 = 0

Where:


a = -2\\b = -6\\c = 5

The roots will be given by the following formula:


x = \frac {-b \pm \sqrt {b ^ 2-4 (a) (c)}} {2a}

Substituting the values we have:


x = \frac {- (- 6) \pm \sqrt {(- 6) ^ 2-4 (-2) (5)}} {2 (-2)}\\x = \frac {6 \pm \sqrt {36 + 40}} {- 4}\\x = \frac {6 \pm \sqrt {76}} {- 4}\\x = \frac {6 \pm \sqrt {2 ^ 2 * 19}} {- 4}\\x = \frac {6 \pm2 \sqrt {19}} {- 4}\\x = \frac {3 \pm \sqrt {19}} {- 2}

We have two roots:


x_ {1} = \frac {-3- \sqrt {19}} {-2}\\x_ {2} = \frac {-3+ \sqrt {19}} {2}

Answer:


x_ {1} = \frac {-3- \sqrt {19}} {2}\\x_ {2} = \frac {-3+ \sqrt {19}} {2}

User Todor Kolev
by
7.6k points

No related questions found