16.6k views
4 votes
What is the perimeter of rhombus WXYZ?

StartRoot 13 EndRoot units
12 units
StartRoot 13 EndRoot units
20 units

What is the perimeter of rhombus WXYZ? StartRoot 13 EndRoot units 12 units StartRoot-example-1
User Gib
by
7.1k points

2 Answers

3 votes

Answer:

C) 4 \sqrt{13}

Explanation:

User Harlem
by
6.9k points
1 vote

Answer:

The perimeter of rhombus WXYZ is
4 √(13)

Explanation:

Step 1 :Finding length of XY

Distance formula =
√((x_2-x_1)^2 +(y_2-y_1)^2)

here


x_1= 5


x_2=3


y_1= -1


y_2=2

XY =
√((3-5)^2 +(2 -(-1))^2)

XY =
√((3-5)^2 +(2 +1))^2)

XY =
√((-2)^2 +(3))^2)

XY =
√(4 +9)

XY =
√((13))

Step 2 :Finding length of YZ

Distance formula =
√((x_2-x_1)^2 +(y_2-y_1)^2)

here


x_1= 3


x_2=5


y_1= 2


y_2=5

YZ =
√((5-3)^2 +(5-2)^2)

YZ =
√((2)^2 +(3)^2)

YZ =
√(4 +9)

YZ =
√((13))

Step 3 : :Finding length of ZW

Distance formula =
√((x_2-x_1)^2 +(y_2-y_1)^2)

here


x_1= 5


x_2=7


y_1= 5


y_2=2

ZW =
√((7-5)^2 +(5-2)^2)

ZW =
√((2)^2 +(3)^2)

ZW =
√(4 +9)

ZW =
√((13))

Step 4 :Finding length of WX

Distance formula =
√((x_2-x_1)^2 +(y_2-y_1)^2)

here


x_1= 7


x_2=5


y_1= 2


y_2= -1

WX =
√((7-5)^2 +((-1)-2)^2)

WX =
√((2)^2 +(-3)^2)

WX =
√(4 +9)

WX =
√((13))

Step 5: finding the perimeter of the rhombus

Perimeter= 4 X side

=>
4 * √(13)

=>
4 √(13)

User Andrew Neilson
by
7.5k points