Answer:
(a) 4800 kg m^2/s^2 , 9600 kg m^2/s^2
(b) 480 Nm
Step-by-step explanation:
length of each blade = 3 m
total length, L = 2 x 3 = 6 m
mass of each blade = 120 kg
total mass, m = 2 x 120 = 240 kg
initial angular velocity, ωo = 0 rad/ s
final angular velocity, ω = 1200 rpm = 1200 / 60 = 20 rps = 125.6 rad/s
t = 30 s
Let the angular acceleration is α.
α = (ω - ωo)/t = 120 / 30 = 4 rad/s^2
(a) moment of inertia. I = mL^2 / 12
I = 240 x 6 / 12 = 120 kg m^2
Let ω' be the angular velocity at the end of 10 s
use first equation of motion
ω' = 0 + αt
ω' = 4 x 10 = 40 rad/s
Angular momentum at t = 10 s
L = I x ω = 120 x 40 = 4800 kg m^2/s^2
Let ω'' be the angular velocity at the end of 20 s
use first equation of motion
ω'' = 0 + αt
ω'' = 4 x 20 = 80 rad/s
Angular momentum at t = 20 s
L = I x ω = 120 x 80 = 9600 kg m^2/s^2
(b) Torque, τ = I x α
τ = 120 x 4 = 480 Nm