Answer:
A. $115,291.30
B. $421,536.55
C. $1,471,502.67
Step-by-step explanation:
The expression that describes the final amount of a $15,000 investment compounded annually for 35 years is:
![A = \$15,000*(1+i)^(35)](https://img.qammunity.org/2020/formulas/business/college/h2iazfkp8kua0xuzxb98hcjewb849hcuoh.png)
A. 6% per year
i = 0.06
![A = \$15,000*(1+0.06)^(35)\\A = \$115,291.30](https://img.qammunity.org/2020/formulas/business/college/9zpcpk89s5o9c2djsnvkkmlpewmwiezl57.png)
B. 10% per year
i = 0.10
![A = \$15,000*(1+0.10)^(35)\\A = \$421,536.55](https://img.qammunity.org/2020/formulas/business/college/sw12ljzb2lhq0jlehbh8heqkf94sp8zvuc.png)
C. 14% per year
i = 0.14
![A = \$15,000*(1+0.14)^(35)\\A = \$1,471,502.67](https://img.qammunity.org/2020/formulas/business/college/8g2a95k3l62zmwehix5tsl51p9z8jgypoh.png)