Final answer:
A length of 20.6 cm of tape must be pulled if a total of 1.8 × 10^13 electrons are transferred during the pulling, given that the tape acquires 0.14 microcoulombs of charge per centimeter.
Step-by-step explanation:
To find out what length of tape must be pulled if a total of 1.8 × 10^13 electrons are transferred during the pulling, we first need to determine the total charge in coulombs transferred to the tape. Since each electron has a charge of approximately -1.602 × 10^-19 coulombs, we can multiply this value by the number of electrons to get the total charge:
Total charge = Number of electrons × Charge per electron = 1.8 × 10^13 × -1.602 × 10^-19 C = -2.8836 × 10^-6 C.
Since the charge is negative and we are looking for the positive charge transferred to the tape, we take the absolute value of this charge. Now, given that each centimeter of tape acquires 0.14 microcoulombs (or 0.14 × 10^-6 C), we can divide the total charge by the charge per centimeter to find the length of the tape:
Length of tape = Total charge / Charge per cm = 2.8836 × 10^-6 C / (0.14 × 10^-6 C/cm) = 20.6 cm
Therefore, a length of 20.6 cm of tape must be pulled to have 1.8 × 10^13 electrons transferred to it, assuming the tape was electrically neutral before being pulled.