Answer:
![f^(-1)(x)=(x)/(6)+(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cwz0cmprim6400dybs0a51ax5sn14tjxyc.png)
Explanation:
Given function.
![f(x)=6x-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2nb0avsp7xopkah7o9w2q0hndax1f0lizn.png)
To find the inverse function
![f^(-1)(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tijlr5txetn9e2jzt0oij76xvsmzw1dvzv.png)
Step 1:
Replace
with
in the function.
![y=6x-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kgij0smlr34rlp34zhd22zkqltasiokjo5.png)
Step 2:
Interchange
with
in the equation.
![x=6y-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/91l44h64mna76d9st1jcxqh0ykudn5n091.png)
Step 3:
Solve for
.
We have
![x=6y-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/91l44h64mna76d9st1jcxqh0ykudn5n091.png)
Adding 4 to both sides,
![x+4=6y-4+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oh4ugl53sguei4dygzc7mwpkdbnue8wo3s.png)
![x+4=6y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zs5ur7h1gm2pfrslkl25or7bfchntzj25e.png)
Dividing each term by 6 to isolate
![y](https://img.qammunity.org/2020/formulas/mathematics/college/uw0b7dbqmfpakodpw1nh8u5h9nrcutx8vw.png)
![(x)/(6)+(4)/(6)=(6y)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1tc134un035qfc8mxmajhnix99pw3a5f8q.png)
![(x)/(6)+(4)/(6)=y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/28n5q1wpk1f4sr7xi7j079k2ldxibsp85a.png)
Simplifying fractions by dividing the numerator and denominator by their GCF.
![(x)/(6)+(4/ 2)/(6/ 2)=y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yrd6quza1p2ngijnp9e2ap2h498u5udzn6.png)
![(x)/(6)+(2)/(3)=y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ias8viwykqk4u34rztgt1aky8y32i7w1jk.png)
Thus the equation of
is:
![y=(x)/(6)+(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vy8db2p3qktsdfk8t0lijlrafargghv2n0.png)
Step 4:
Replace
with
![f^(-1)(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tijlr5txetn9e2jzt0oij76xvsmzw1dvzv.png)
(Answer)
Thus, we have the inverse function