230k views
3 votes
Match each question with one of the responses

Match each question with one of the responses-example-1
User Relax
by
8.0k points

1 Answer

6 votes

Answer:


√(2) \,√(3) \,√(3) =3\,√(2)


√(2) \,√(3) \,√(-3) =3\,i\,√(2)


√(-2) \,√(-3) \,√(-3) =-3\,i\,√(2)

4)
√(2) \,√(-3) \,√(-3) =-3\,√(2)

Explanation:

Let's work on each expression at a time, recalling the definition of the imaginary unit
√(-1) =i, and the properties of radical multiplication:
√(a) \,\,√(b) =√(a\,b)

1)
√(2) \,√(3) \,√(3) =√(2) \,√(3\,*\,3)=√(2) \,√(3^2)=√(2) \,*\,3=3\,√(2)

2)
√(2) \,√(3) \,√(-3) =√(2) \,√(3)\,\,√(3) \,\,√(-1) =√(2) \,√(3^2)\,\,i=3\,i\,√(2)

3)
√(-2) \,√(-3) \,√(-3) =√(-1) \,\,√(2)\,\, √(-1) \,\,√(3)\,\,√(-1) \,\,√(3)=i^3\,√(2) \,\,√(3^2) =(-1)\,i\,√(2)\,\,3=-3\,i\,√(2)

4)
√(2) \,√(-3) \,√(-3) =√(2) \,\,√(-1) \,\,√(3) \,\,√(-1) \,\,√(3) \,=√(2) \,\,i^2 \,\,√(3)  \,\,√(3) \,\,=(-1)\,√(2) \,\,√(3^2) =-3\,√(2)

User GraphicsMuncher
by
8.8k points