Answer:
B.
![(b)/(2a^(2)c^3)\sqrt[3]{15b}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z22rzbja3usxmwlut5sczkihuivlkrqasm.png)
Explanation:
Given:
The expression to simplify is given as:
![\sqrt[3]{(75a^7b^4)/(40a^(13)c^9)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kp7wi2dxntx7izzloepl1vlssqdnf8pafg.png)
Use the exponent property
![(a^m)/(a^n)=a^(m-n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5mjew8lj9xszpbhfd372i8ss4d5p390xt0.png)
![(a^7)/(a^(13))=a^(7-13)=a^(-6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gwfdqf3qp1gmvojpjw86a9n0w7wr4r7dvb.png)
Use the exponent property
![(a^m)^n=a^(m* n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mmnv9ao1uowwkocwv3cghcz76fn4njinmd.png)
![a^(-6)=a^(-2* 3)=(a^(-2))^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nxd9hyioqm210ounblpmm86f3r9xkuyy8z.png)
![b^4=b* b^3\\c^(9)=(c^3)^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5kc7gwfagb10vfqm1tcd0tivjifr6wm552.png)
Reducing
to simplest form, we get:
![(5* 5* 3)/(2^3* 5)=(15)/(2^3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9yp7kf8dt3ifcnacxfm2hsbt3b26ts02rx.png)
Therefore, expression becomes:
![\sqrt[3]{(15(a^(-2))^3* b* b^3)/(2^3(c^3)^3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvdjsirn1qojl8jn8feh27oxgwhjnol04l.png)
Use the cubic root property:
. Thus, the expression becomes:
![(a^(-2)b)/(2c^3)\sqrt[3]{15b}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2rwlyl26cm4hoggecqtf1ldp59ddgqxy1y.png)
Using the exponent property
![a^(-m)=(1)/(a^m)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pg2ajo9qnpnpjpqxg7lp7vo6lt7lc8y4nc.png)
![a^(-2)=(1)/(a^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sg1qc4n2zzx4j8kq6cvjasq3uysetdr9vv.png)
So, the final expression is:
![(b)/(2a^(2)c^3)\sqrt[3]{15b}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z22rzbja3usxmwlut5sczkihuivlkrqasm.png)
Therefore, the correct option is option B.