Answer:
![Y=0.4X^2-2.4X+7.6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s0m78argvt7gl3c967uana0ysygx5qa82a.png)
Explanation:
Given:
The quadratic equation in vertex form is given as:
![Y=0.4(X-3)^2+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9o5hfz62hmm4f7vfoc5ac3x9xrr7wv3msw.png)
The standard form of a quadratic equation is:
![y=ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/681jf4lsjwxd9lmjd27bh82m6tps71a0gl.png)
Now, in order to convert the given equation into standard form, we have to expand
using the binomial expansion given by:
![(a-b)^2=a^2+b^2-2ab](https://img.qammunity.org/2020/formulas/mathematics/high-school/qlrefyo94jw240xfow01wn748vpj296x53.png)
Here,
![a=X\ and\ b= 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3kj53347cssj1arpay1aigijltsx2rv1br.png)
Therefore,
![(X-3)^2=X^2+3^2-2(X)(3)\\(X-3)^2=X^2+9-6X](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qchq5ffpdsr25bb9k0c0jqxq6puuepuhpk.png)
Now, plug in this expanded form into the original equation. This gives,
![Y=0.4(X^2+9-6X)+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x2xd41zzm1mwxcaottsm5fi38laxeh6eiu.png)
Now, we use distribute 0.4 inside the parenthesis. This gives,
![Y=0.4X^2+(0.4*9)-(6X*0.4)+4\\Y=0.4X^2+3.6-2.4X+4\\Y=0.4X^2-2.4X+4+3.6\\Y=0.4X^2-2.4X+7.6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kohkw1sm89z6gflye18nkxp77gl0hnzgou.png)
Therefore, the standard form of the given equation is:
![Y=0.4X^2-2.4X+7.6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s0m78argvt7gl3c967uana0ysygx5qa82a.png)