64.0k views
0 votes
A vector u has a magnitude of 15 and a direction of 0 degrees. A vector v has a magnitude of 9 and a direction of 35 degrees. Find the direction and magnitude of u+v to the nearest whole values

1 Answer

1 vote

Answer:


\displaystyle \alpha \simeq 13^o


\displaystyle \left | \vec{u}+\bar{v} \right |\simeq 23

Explanation:

Sum Of Vectors

Given


\displaystyle \vec{u}=<a,b>, \vec{v}=<c,d>

the sum of both is


\displaystyle \vec{u}+\vec{u}=<a+c,b+d>

Given a vector


\displaystyle \vec{x}=<m,n>

The magnitude of \vec x is


\displaystyle \left | \vec{x} \right |=√(m^2+n^2)

And the angle is forms with the positive x-axis is


\displaystyle tan\alpha =(n)/(m)

We have


\displaystyle \vec{u}=<15\ cos0^o,15\ sin\ 0^o>


\displaystyle \vec{u}=<15,0>

Also


\displaystyle \vec{v}=<9\ Cos\ 35^o,9\ sin\ 35^o>


\displaystyle \vec{v}=< 7.372,5.162>

The sum of both vectors is


\displaystyle \vec{u}+\vec{v}=<15+7.372,0+5.162>


\displaystyle \vec{u}+\vec{v}=<22.732,0+5.162>

The magnitude of the sum is


\displaystyle \left | \vec{u}+\vec{v} \right |=√(22.732^2+5.162^2)=22.96

We compute the angle (direction)


\displaystyle tan\alpha =(5.162)/(22.732)=0.227


\displaystyle \alpha =12.79^o

Rounding to the nearest integer


\displaystyle \alpha \simeq 13^o

Rounding the magnitude


\displaystyle \left | \vec{u}+\bar{v} \right |\simeq 23

User Psgels
by
7.6k points