Answer:
![y=-(8)/(3)x-11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hosqcqnbq11cbiayqfltvjmhdvup1s5j7p.png)
Explanation:
Given:
Two points on a line are given as:
(-6, 5) and (-3, -3)
Now, equation of a line with two points
is given as:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
Where, 'm' is the slope and is given as:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pj0y5tg37a7a9ase0auiwe687ez8iaw2vl.png)
Now, plugging the value of 'm' in the above equation, we get:
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/n0rzjdpc5cn2wzcw2wa5up506xbiy78220.png)
Here,
![(x_1,y_1)=(-6,5)\ and\ (x_2,y_2)=(-3,-3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b37leinpr2o6dkc1hw4spq0dlc6jxqghkm.png)
![y-5=((-3-5)/(-3-(-6)))(x-(-6))\\\\y-5=((-8)/(-3+6))(x+6)\\\\y-5=(-8)/(3)(x+6)\\\\y-5=-(8)/(3)x-16\\\\y=-(8)/(3)x-16+5\\\\y=-(8)/(3)x-11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ppp3r9ldnofig2qgt4hq8kwpdpfvc2l3mt.png)
Therefore, the equation of a line passing through (-6,5) and (-3,-3) is:
![y=-(8)/(3)x-11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hosqcqnbq11cbiayqfltvjmhdvup1s5j7p.png)