Answer: (1583.63, 1672.37)
Explanation:
Given : Sample size : n= 83
Sample mean :
![\overline{x}=1628](https://img.qammunity.org/2020/formulas/mathematics/high-school/dbe1etrsr5go19dx2p4ha1vg3ga7hb5csq.png)
Sample standard deviation :
![\sigma=243](https://img.qammunity.org/2020/formulas/mathematics/high-school/e0azw83ehnewdkegq94pg5n8z5okkn4heu.png)
The population standard deviation
is unknown .
The confidence interval for population mean :
![\overline{x}\pm t_(\alpha/2)(s)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/high-school/9ej8hu6vufpgz8ti7aox1wybudh2wc3kzy.png)
For 90% confidence , significance level =
![\alpha=1-0.90=0.10](https://img.qammunity.org/2020/formulas/mathematics/college/gh2zkpmg7w2illybrnkip3utipm4q6mucv.png)
Using t-distribution table , Critical t-value =
![t_((\alpha/2, n-1))=t_(0.05,82)=1.6636](https://img.qammunity.org/2020/formulas/mathematics/high-school/yvbmwzpl3f1v7do1optchof3mkugzvc1pt.png)
, where n-1 is the degree of freedom.
Now , 90% confidence interval for the mean square footage of all the homes in that city will be :-
![1628\pm (1.6636)(243)/(√(83))\\\\ 1628\pm (1.6636)(26.672715)\\\\\\\\\approx1628\pm 44.37\\\\=(1628- 44.37,\ 1628+ 44.37)\\\\=(1583.63,\ 1672.37)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5jysjb0svbzg2lj7gqshesqdozs23k8r4w.png)
Hence, the 90% confidence interval for the mean square footage of all the homes in that city = (1583.63, 1672.37)