207k views
5 votes
Take a factor out of the square root:

a)
\sqrt{x^(3) }
b)
\sqrt{a^(5) }

1 Answer

0 votes

Answer:

(a)
√(x^3)  = x√(x)

(b)
√(a^5)  = a^2√(a)

Explanation:

Here, the given expression is :


(a)  √(x^3)

Now, cube of any number
a = (a)^3  = a *  a  * a

So,
(x)^3  = x *  x  * x   = (x) ^2  * x


\implies   √(x^3)  =   √(x^2 * x)  = √(x^2)√(x)   = x√(x)

(because
√(a^2)    =  a)

Hence,
√(x^3)  = x√(x)

Here, the given expression is :


(b)  √(a^5)

Now, five power of any number
m = (m)^5  = m * m  * m * m  * m

So,
(x)^5  = x *  x  * x  * x * x   = (x) ^4  * x


\implies   √(a^5)  =   √(a^4 * x)  = √(a^4)√(a)   = a^2√(x)

(because
√(a^4)    =  a^2)

Hence,
√(a^5)  = a^2√(a)

User Morton
by
8.8k points