Answer:
The equation for the description is:
![\mathbf{123=2(2x+x)\:or\:123=6x}](https://img.qammunity.org/2022/formulas/mathematics/high-school/bsh42942po31ajwmznel75bofrlrclssoy.png)
Explanation:
We need to write an equation for the description.
The length of a rectangle is twice its width. The perimeter of the rectangle is 123 feet.
Let Width of rectangle = x
Length of rectangle = 2x (twice its width means, multiplying 2 with width)
Perimeter of rectangle = 123 feet
The formula used is:
![Perimeter\:of\:rectangle=2(Length* Width)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mn3ncz1jgwxxekqoxm4ewk8rirslmou1w9.png)
Putting values and finding equation:
![Perimeter\:of\:rectangle=2(Length+ Width)\\123=2(2x+x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7ywur90be8rdd0oy5v4ioxpf4qeuhpoilk.png)
So, the equation for the description is:
![\mathbf{123=2(2x+x)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/qxcsuebmzqbq96ieejoqigpiig8jaa6fge.png)
You can simplify the equation as:
![123=2(2x+x)\\123=2(3x)\\123=6x](https://img.qammunity.org/2022/formulas/mathematics/high-school/hkwzee0qw94sbhxihyg78fe1mpvijz5bi0.png)
Both equations can be used:
![\mathbf{123=2(2x+x)\:or\:123=6x}](https://img.qammunity.org/2022/formulas/mathematics/high-school/bsh42942po31ajwmznel75bofrlrclssoy.png)