Answer:
The ball is at a height of 120ft when t = 2.2 and when t = 3.5.
Explanation:
![h = -16t^(2) + v(0)t](https://img.qammunity.org/2020/formulas/mathematics/college/13afmhlh0gyhodxwe1nel9exf9hbrqsgi4.png)
A ball is thrown vertically in the air with a velocity of 90ft/s.
This means that v(0) = 90. So
![h = -16t^(2) + 90t](https://img.qammunity.org/2020/formulas/mathematics/college/d332qq2vqznb0lxt5o0nwg85ixlsuizmmo.png)
Use the projectile formula h=−16t2+v0t to determine at what time(s), in seconds, the ball is at a height of 120ft.
This is t when
![-16t^(2) + 90t = 120](https://img.qammunity.org/2020/formulas/mathematics/college/d0o1pzt5a45lkgvoi3hkm7u0jpxho50e7l.png)
![16t^(2) - 90t + 120 = 0](https://img.qammunity.org/2020/formulas/mathematics/college/lj3hglzbj39qpk26bdx84tt3r0n83wnd6q.png)
Finding t
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2020/formulas/mathematics/college/gqgs1jlufbyu2szn6hfk3x0kgfh3zspk5c.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2020/formulas/mathematics/college/8j76xx69ctg5j4laz9xzxogto0psgkzupg.png)
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2020/formulas/mathematics/college/a0wzb2mbviaogje9c8w0czfje0vemddpy5.png)
In this problem:
![16t^(2) - 90t + 120 = 0](https://img.qammunity.org/2020/formulas/mathematics/college/lj3hglzbj39qpk26bdx84tt3r0n83wnd6q.png)
So
![a = 16, b = -90, c = 120](https://img.qammunity.org/2020/formulas/mathematics/college/yp83x8jked8atiwmrsmwojywj2oapyoo24.png)
![\bigtriangleup = (-90)^(2) - 4*16*120 = 420](https://img.qammunity.org/2020/formulas/mathematics/college/64pdgj0u5j3xm5ayseg4eqwz2hfn1bpkus.png)
![t_(1) = (-(-90) + √(420))/(2*16) = 3.5](https://img.qammunity.org/2020/formulas/mathematics/college/rcd26ia3s4rjh2t16w1ma8q6xxzk264zyq.png)
![t_(2) = (-(-90) - √(420))/(2*16) = 2.2](https://img.qammunity.org/2020/formulas/mathematics/college/fxbmv1idv11gh6hu7v62lpe87tn453b8rh.png)
The ball is at a height of 120ft when t = 2.2 and when t = 3.5.